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Abstract
We discuss volume stabilization in a 6D braneworld model based on 6D
supergravity theory. The internal space is compactified by magnetic flux and
contains codimension two 3-branes (conical singularities) as its boundaries.
In general the external 4D spacetime is warped and in the unwrapped limit
the shape of the internal space looks like a ‘rugby ball’. The size of the
internal space is not fixed due to the scale invariance of the supergravity theory.
We discuss the possibility of volume stabilization by the Casimir effect for a
massless, minimally coupled bulk scalar field. The main obstacle in studying
this case is that the brane (conical) part of the relevant heat kernel coefficient
(a6) has not been formulated. Thus as a first step, we consider the 4D analog
model with boundary codimension two 1-branes. The spacetime structure of
the 4D model is very similar to that of the original 6D model, where now
the relevant heat kernel coefficient is well known. We derive the one-loop
effective potential induced by a scalar field in the bulk by employing zeta
function regularization with heat kernel analysis. As a result, the volume is
stabilized for most possible choices of the parameters. Especially, for a larger
degree of warping, our results imply that a large hierarchy between the mass
scales and a tiny amount of effective cosmological constant can be realized
on the brane. In the non-warped limit the ratio tends to converge to the same
value, independently of the bulk gauge coupling constant. Finally, we will
analyze volume stabilization in the original model 6D by employing the same
mode-sum technique.
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1. Introduction

There are longstanding problems in phenomenology and cosmology. One of them is why
gravity is so weak in comparison with the electroweak interactions (in other words why Planck
scale MPl ∼ 1019 GeV is much larger than that of electroweak interaction MEW ∼ 103 GeV),
i.e. the hierarchy problem. Another problem is why the energy density of dark energy which
dominates the present universe (assuming that its origin is vacuum energy of quantum fields)
ρVac ∼ (10−3 eV)4 is much smaller than that of gravitational scale M4

Pl, which is naturally
expected from the standard model and is known as the cosmological constant problem.

In this paper, we focus on the Casimir effect in a 6D braneworld model whose internal
space is compactified by a magnetic flux [1]. 6D flux compactification models have attracted
particular attentions in recent years since they may help to resolve the above problems. The
model corresponds to a simple realization of the scenario of the ‘large extra dimensions’ (in
6D) [2], where one can choose the gravitational energy scale M6 as large as the electroweak
scale M6 ∼ MEW. What is essential is the presence of the brane, where standard model
particles can be localized. At the same time, the extra dimensions could be detected in the
future gravity test, since their size may be 0.1 mm scales [2].

Also another important point is that the gravitational property of the codimension two
brane, i.e. 3-brane in 6D spacetime, is suitable for resolution of the cosmological constant
problem, since the vacuum energy of the brane does not curve our 4D spacetime and just
change the deficit angle in the bulk [3]1.

Keeping the above properties in mind, the Casimir effect in 6D brane spacetime may
play an important role. An important point is that MPl ∼ 1016MEW and ρ

1/4
Vac ∼ 10−16MEW.

Thus in these two hierarchies there is similarity and these problems may be solved at the
same time, if the theory could give the common factor as large as 1016. The Casimir effect in
two compactified dimensions may be able to give the common factor. Imagine a spacetime
with two extra dimensions whose size is assumed to be stabilized at a characteristic scale
a. Then, the effective 4D Planck mass is given by M2

Pl = a2M4
6 [2], where we assume

M6 ∼ MEW. Casimir energy density induced on the brane by fields living in the internal
space is roughly given by ρCas ∼ a−4. Thus, we get ρCas/M

4
6 ∼ (M6/MPl)

4. If the Casimir
energy density ρCas plays the role of the current dark energy density ρVac, we can get the
desired ratio (see also [5]). The problem is whether the ratio is really obtained from the
set-up of the 6D braneworld. We focus on the Casimir effect in a concrete model of 6D
braneworld with a warped compactification based on the 6D Nishino–Sezgin (Salam–Sezgin)
supergravity [6].

In this model, the 2D internal space is supported by a magnetic flux and contains
codimension two branes (conical singularities) as boundaries. In the special limit, the shape
of the internal space looks like a ‘rugby ball’. The size of the internal space is not fixed due to
the scale invariance of the underlying theory and we discuss the volume stabilization by the
Casimir effect2. We take the approach to perform the zeta function regularization combining
with the heat kernel analysis. The main obstacle is that the brane (conical) contribution to
the relevant heat kernel coefficient is not formulated. Thus, instead of the original 6D model,
as the fist step we consider the 4D version of the warped compactification. Then, we shall
discuss the possibility of volume stabilization in the original 6D model based on the mode-sum
technique developed in the study of 4D model (see [8–10]).

1 It has also been suggested that the so-called ‘self-tuning’ mechanism of the cosmological constant does not work
due to hidden fine-tunings [4].
2 For another way of the volume stabilization in such a model, see [7].
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2. 6D warped compactifications

2.1. Solution

We consider a 6D Einstein–Maxwell-dilaton theory with a non-vanishing scalar potential
[1, 6] as

S6 = M4
6

∫
d6x

√−g

(
1

2
R − 1

2
∂Aϕ∂Aϕ − 1

4
e−ϕFABFAB − 2g2

6 eϕ

)
, (1)

where ϕ is a dilaton field, FAB represents a U(1) gauge field strength and g6 is the U(1)

gauge coupling constant. This theory corresponds to the bosonic part of the Nishino–Sezgin
(Salam–Sezgin) 6D supergravity [6], whose other fields contents can be chosen to be vanishing
consistently. Hereafter we basically set M4

6 = 1 for simplicity.
This theory contains a series of solutions of warped compactifications [1] ;

ds2 = h(ρ) dθ2 +
dρ2

h(ρ)
+ (2ρ)ηµν dxµ dxν, h(ρ) = g2

6

2ρ3

(
ρ2

+ − ρ2
)
(ρ2 − ρ2

−),

ϕ(ρ) = − ln(2ρ), Fθρ = −g6ρ+ρ−
ρ3

,

(2)

where two 3-branes are located at ρ = ρ±. For later convenience, we define a new parameter
α = ρ−/ρ+ which controls shape (warping) of the internal space.

The braneworld action is given by S± = − ∫
d4x

√−hσ±, respectively, where σ± denotes
the brane tensions, which are related to the conical deficit angles by σ± = M4

6 δ±. hab is
the brane-induced metric. The deficit angles are related to α as (2π − δ+)/(2π − δ−) = α2.
Once the brane tensions, σ± are specified, then the bulk shape α is also fixed. We now regard
α and ω := 2π − δ+ as free parameters, instead of σ±, along with g6. So we shall use
(+)-brane as a reference brane. The remaining modulus is the absolute size of the bulk, ρ+.
To discuss the modulus dynamics, we take the moduli approximation, namely assuming that
ρ+ → ρ+(x

µ). After integrating over the extra dimensions and and redefining the modulus as

χ6(x
µ) =

√(
8πωM4

6 /g2
6

)
ρ+ we obtain the canonical form of the modulus kinetic term.

2.2. One-loop effective potential

Next, we introduce a massless, minimally coupled scalar field and work in the Euclideanized
space. The action for the massless scalar field perturbations is given by

Sscalar = 1

2

∫
d6x

√−gφ�6φ. (3)

The one-loop effective action for a massless minimally coupled scalar field is given
by W6 = (1/2)ln det(−�6), where �6 is 6D Laplacian. W6 needs to be regularized and
renormalized. For this purpose, we introduce the (integrated) zeta function, which is given by
the mode summatio

ζ(s,�6) =
∫

d4x
∑
m,n

∫
d4k

(2π)4

1

λ2s
, (4)

where the eigenvalues are defined by �6φλ = −λ2φλ. m = 0, 1, 2, . . . , n = 0,±1,±2, . . .

represents the angular quantum number and k corresponds to the usual 4-momentum. (We
now are working in the Euclideanized space.) The renormalized scalar field effective action
can be written in terms of the analytically continued zeta function W6,ren = −(1/2)ζ ′(0,�6)−
(1/2)ζ(0,�6) ln µ2. By integrating over the internal dimensions, the 4D effective potential is
W6,ren = ∫ (

d4xρ2
+

)
V6,eff = ∫

d4x̃V6,eff . For brevity, from now on we shall omit the subscript

3
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‘ren’. One strategy to evaluate the one-loop effective action and the effective potential is to
define a continuous conformal transformation (parameterized by ε)

ds̃2
6,ε = e2(ε−1)� ds2

6 , � = 1
2 ln(2ρ), (5)

where for ε = 1 we have the original metric, which we shall denote as �6,ε = �6.
The classical action of this scalar field is changed under a conformal transformation
equation (5): Sscalar = −(1/2)

∫
d6x

√
gφ�6φ = −(1/2)

∫
d6x

√
g̃φ̃(�̃6 + E6(ε))φ̃, where

E6(ε) = −4(ε − 1)2g̃ab∇a�∇b� + 2(ε − 1)�̃6 ln �. Then, the effective potential can be
written as

V6,eff(α, ω, g6, µ; ρ+) = A6(α, ω, g6) − B6(α, ω, g6) ln(µ2ρ+)

ρ2
+

, (6)

where we define∫
d4xA6(α, ω, g6) =

∫
d4x̃

A6(α, ω, g6)

ρ2
+

= −
∫ 1

0
dεa6

(
f = 1

2
ln

(
2ρ

ρ+

))
− 1

2
ζ ′(0,�6,ε=0), (7)

∫
d4xB6(α, ω, g6) =

∫
d4x̃

B6(α, ω, g6)

ρ2
+

= 1

2
ζ(0,�6,ε=0).

The term a6 is given by the volume integration of linear combinations of cubic order curvature
invariants (see [11]). Clearly, if B6(α, ω, g6) > 0, then the modulus effective potential has a
minimum at ρ∗

+ = µ−2 e(2A6+B6)/(2B6). It is straightforward to show that ζ(0,�6) = a6(f = 1).
The problem, however, is that the concrete form of the conical heat kernel is not formulated.
We mainly analyze the 4D analog model.

2.3. Phenomenological implications

2.3.1. Hierarchy problem. A way to resolve the hierarchy problem in braneworld set-up was
first proposed in the ‘large extra dimensions’ scenario in [2]. In this scenario, the fundamental
gravitational scale is not MPl but the higher-dimensional one (M6 in 6D braneworld) and
M6 ∼ MEW. Then, the observed Planck scale is effectively given by M2

pl � (ρ+(2πω)/g2)M4
6 .

To get the observed value of reduced Planck scale, the size of extra dimension should be
(ρ+)

1/2 ∼ 0.1 mm. Thus now we ask whether volume stabilization at this scale can be realized
in the present model. If we assume a brane localized field3 whose mass is given by m2 on
either brane at ρ± then the observed mass scales are m2

+ = m2 and m2
− = α2m2. We now

assume that m2
± ∼ M2

EW. Thus, the mass ratio between the field and the effective Planck mass
is roughly given by

(
m2

±/M2
pl

) � (
µ2m2/M4

6

)(
g2

6/(2πω)
)

e−(2A6+B6)/(2B6). Assuming that the

factor of
(
µm/M2

6

)2
takes the optimal value of O(1) for the unification of all the fundamental

energy scales in 6D, the effective mass ratio is characterized by

R(α, ω, g6) := g2
6

2πω
e−(2A6+B6)/(2B6)|ρ+=ρ+,∗ , (8)

where we have used the value of ρ+,∗ at the stabilization. As is explained above, once the size
of the internal space ρ

1/2
+ is stabilized at 0.1mm, then R has a value as ∼10−32.

3 We implicitly assume that the brane has a extremely small, but finite thickness so that ordinary particles can be
localized.
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2.3.2. Cosmological constant problem. A characteristic property of 6D braneworld is that
the tree level vacuum energy of the brane, i.e. brane tension, only changes the bulk deficit
angle [3]. Thus, if the brane geometry is 4D Minkowski, then sudden changes of brane
vacuum energy would not affect the brane geometry. Such a mechanism is called self-tuning
mechanism. Note that there are several criticisms for such a self-tuning mechanism mainly
because there could be hidden fine-tunings, e.g. due to the magnetic flux quantization condition
in the bulk [4]. In the following discussions, we implicitly assume that such a mechanism
works.

After volume stabilization, the effective potential (Casimir energy density) takes the
value V ∗

6,eff(α, ω, g6) = −(1/2)µ4B6(α, ω, g6) e−(2A6+B6)/B6
∣∣
ρ+=ρ+,∗

(= ρCas) and hence, the
realized brane vacuum energy is almost completely determined by the renormalization. The
renormalization scale µ could be chosen to be µ ∼ M6(∼MEW). Casimir energy density
becomes negative. It could be uplifted, e.g. by taking fermionic contributions into account.
We now, simply focus on the absolute value of the energy density.

3. Volume stabilization in the 4D warped compactifications

3.1. 4D warped compactification model

As mentioned in the previous section, there is no mathematical formulation of the conical
contribution of the heat kernel coefficient a6 as long as the authors are aware of. Thus, we
focus on the 4D version of warped compactificaitions, where the relevant heat kernel a4 is
formulated. The action is given by

S4 = M2
4

∫
d4x

√−g

(
R − 1

2
∂Aϕ∂Aϕ − 1

8
e−ϕFABFAB − 4g2

4 eϕ

)
, (9)

which has a series of warped flux compactification solutions

ds2 = h(ρ) dθ2 +
dρ2

h(ρ)
+ (2ρ)

(−dτ 2 + dx2
2

)
, h(ρ) = 2g2

4

ρ
(ρ+ − ρ) (ρ − ρ−) ,

ϕ(ρ) = − ln(2ρ), Fθρ = −g4ρ+ρ−
ρ2

.

(10)

We also set M4 = 1. Then, the branes are corresponding to the strings, lying at ρ = ρ±.
We also consider Casimir effect by a massless, minimaly coupled scalar field Sscalar =

−(1/2)
∫

d4x
√−gφ�4φ. The discussion in deriving the explicit form of the effective potential

is very similar to the case of the 6D model. The one-loop effective potential is given by

V4,eff(α, ω, g, µ; ρ+) = A4(α, ω, g4) − B4(α, ω, g4) ln(µ2ρ+)

ρ+
. (11)

The coefficients in equation (11) can be written in the form just as equation (7), by replacing
a6, d4x̃ and g6 with a4, d2x̃ and g4, respectively. The zeta function ζ(s) is also defined as
equation (4), by replacing �6 and d4k with �4 and d2k, respectively. However, we use the
given mass spectrum in the unwrapped frame

(�̃4 + E(0))φ̃λ = −λ2φ̃λ. (12)

Here we assume that the mode functions are regular on both conical boundaries and we obtain
the following mass spectrum:

λ2 = k2 + g2
4

[
4m(m + 1) +

2|n|
ω

(2m + 1)(1 + α) +
4n2α

ω2

]
. (13)

5
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Figure 1. Numerical plot of the integrand of ζ(0) and 2B4 as functions of g4 are shown for α = 1
and δ+ = 0.01 in the 4D model. The red and blue curves correspond to the cases of ζ(0) and 2B4,
respectively. We set jmax = nmax = 50.
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Figure 2. Numerical plot of the integrand of ζ(0) and 2B4 as functions of α are shown for g4 = 10
and δ+ = 0.01 in the 4D model. The red and blue curves correspond to the cases of ζ(0) and 2B4,
respectively. We set jmax = nmax = 50.

We evaluated the cocycle function by the integration of the heat kernel coefficient a4, whose
conical parts are known, and the derivative of the zeta function ζ ′(0) via the summation of
all the KK modes equation (13). For detailed forms of these coefficients, see [8–10]. We
now derive the mass spectrum in the unwrapped frame. The solution for the radial mode of
equation (12) can be written in terms of the hypergeometric functions.

As a consistency check of our results, in figures 1 and 2 we have plotted the integrands of
ζ(0) and B4(α, δ+, g4), which are related to a4(f = 1), as functions of g4 and α, respectively,
for a fixed value of the deficit angle, δ+. Note that both quantities are practically insensitive
to δ+. In the unwrapped frame, due to the properties of the heat kernel coefficients (see,
e.g. [11]), the equation ζ(0) = a4(f = 1) should be satisfied. Although they do not agree
exactly, they do exhibit a similar behavior, namely increasing for larger g4 and for smaller
α. In [8] we confirmed that B4 (and thus a4(f = 1)) is independent of the value of ε [11],
which characterizes the conformal transformation (as given in equation (5) for 6D model) and
therefore, we believe that B4 is correct. We have also carefully checked the convergence of the
mode summations. Thus, it is the view of the author that a possible origin for the disagreement

6
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Figure 3. Numerical plots of log10 R(α, δ+ = 0.01, g4) as a function of α are shown for
g4 = 0.5, 5, 50 (the red, green and blue curves, respectively) in the 4D model. We set
jmax = nmax = 50 as a conservative choice.

could be in our determination of the exact mode spectrum. By imposing vanishing conditions
for the mode functions and their derivatives at the poles (branes), we were able to derive
the mass spectrum in the rugby-ball frame. Our method to determine the mass spectrum is
essentially based on the same arguments given in [12], where two conditions, normalizability
and regularity at the poles were imposed. However, if only normalizability were imposed,
this would allow for logarithmic divergences at the poles and this may well lead to additional
modes in the eigenvalue spectrum, which could then reflect in the differences between figures 1
and 2. Regardless of this, the existence of such modes does not seem likely to significantly
affect the qualitative behavior of our results.

3.2. Volume stabilization and implications

In the most of cases, we have shown that B4(α, ω, g4) is positive and the volume is stabilized
by the Casimir effect. Then, we discuss the phenomenological implications of the volume
stabilization. The mass ratio between the field and the effective 4D Planck scale is almost
characterized by the ratio equation (8), assuming the factor

(
µm/M2

6

)2
takes an optimal value

of O(1). The corresponding quantity in the 4D toy model is given by

R(α, δ+, g4) = g2
4

2π − δ+
e−(A4+B4)/B4 . (14)

In figure 3 we have plotted log10[R(α, δ+ = 0.01, g4)] as a function of α. We obtain larger
mass hierarchies for smaller α and smaller g4. In the limit α → 1, these curves converge at
the same point. Numerical plots also show that this feature is almost independent of the value
of the deficit angle δ+ (or ω).

4. Volume stabilization in 6D warped compactifications

We discuss the stability of the volume modulus against the quantum corrections. As mentioned,
we have no knowledge on the conical contribution of a6. However, it is possible to perform
a summation of modes given by equation (13) to evaluate ζ(0,�6,ε=0) instead of the direct
evaluation of a6(f = 1). In the 4D model, we confirmed that the identity a4(f = 1) = ζ4(0)

is satisfied by our mode-sum scheme and thus we believe that it is also true for the 6D model.

7



J. Phys. A: Math. Theor. 41 (2008) 164060 M Minamitsuji

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Figure 4. A plot for critical warping α∗(ω) is shown as a function of ω in the 6D model.

The extention of the way of our mode summation developed in the analysis of 4D model to
6D is straightforward.

As a result, an important observation is that for smaller α the sign of the integrand of
ζ(0,�6,ε=0) becomes negative implying that the volume modulus is destabilized. In the case
of 4D toy model discussed in [8], there is also negative brane contribution but then the bulk
effect still dominates and the modulus is always stabilized. For any value of ω, we obtain
the critical value of α∗(ω), below which the volume modulus is destabilized. In figure 4, we
show the critical α∗ as a function of ω. Note that the value of α∗ does not depend on g6, since
B6 ∝ g4

6. In discussing phenomenological implications, we need to know the cocycle function
and a6. So for now we leave this issue for future studies.

5. Summary

In this paper, we discussed volume stabilization in warped compactification model in 6D
Nishino–Sezgin supergravity, whose internal space is bounded by codimension two branes
(conical singularities). Due to the scale invariance of the underlying theory, the volume
modulus appears in the 4D effective theory.

Because of the lack of the formulation of the conical heat kernel in the 6D spacetime,
we first discussed the possibility of the volume stabilization in the 4D version of the
warped compactification. We presented an exact mode summation and evaluation of conical
contribution. As a result, we expect a larger mass hierarchy for smaller α (where α characterize
the warping) and for large gauge coupling constant g4. Indeed, for α 	 1, the contribution
from the cocycle function becomes important and gives rise to a large mass hierarchy on the
brane, though at the same time the effective mass of the modulus may become lighter. The
curves for different values of g4 in figure 3 converge to the same point at α = 1. Similar
results are obtained in the case of the vacuum (Casimir) energy density on the branes.

Then, we discussed the volume stabilization in the original 6D model. As a result,
especially for α < α∗(ω), where α∗(ω) is deficit angle dependent critical value (and does not
depend on the bulk gauge coupling g6), the volume modulus is destabilized because of strong
negative contribution from the branes.

8
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